N-Na (Nitrogen-Sodium) System

James Sangster

Equilibrium Diagram

The solubility of N in Na was reviewed by [2000Bor] and [2001Bor]. There is no direct N₂-Na reaction unless the gas is under silent electrical discharge at low pressure [1925Gue]. The solubility of N in Na was reported by [1967Caf] and [1968Ve]]. The Ostwald coefficient for N₂ dissolved in Na at 500 °C and 3-5 atm was $2.5 \pm 1.5 \times 10^{-7}$ [1967Caf]. This is equivalent to an atom fraction of ~8 × 10⁻¹⁰. [1968Ve]] analyzed liquid Na for nitrogen impurity (this was not a determination of solubility). Their results were represented [1982Rum] as exp[-7.39 – 2780/*T* (K)] atom fraction as 1 bar (pressure assumed by [1982Rum]); at 500 °C this is equivalent to 10^{-11} atom fraction. [2001Bor] represents the same data as exp[-7.12 – 2660/*T* (K)] atom fraction; this gives 3×10^{-11} at 500 °C.

There are two compounds: Na_3N (sodium nitride) and NaN_3 (sodium azide). Na_3N is formed by direct reaction of the elements, but only if N_2 is subject to silent electrical discharge at low pressure [1910Fis, 1929Mol, 1930Wat]. It is also formed from the thermal decomposition of $NaNH_2$ [1954Eph] or by the direct reaction of atomic sodium and molecular nitrogen [2002Fis, 2002Sep]. It decomposes before melting [1930Wat]; its crystal structure has only recently been elucidated [2002Fis, 2002Sep]. Calculations suggest that Na_3N is about 90% ionic [1990Sha].

NaN₃ is formed when Na is contacted with N₂ under discharge [1910Fis, 1929Mol, 1930Wat]. It is usually prepared by the neutralization of HN₃ by NaOH in aqueous solution [1898Cur]. It may also be prepared by the reaction of NaNH₂ with N₂O at about 200 °C [1904Den]. NaN₃ decomposes before melting [1926Suh, 1993Bel], and its decomposition temperature lies in the range 275-335 °C [1963Lut, 1990Fuj, 1993Bel]. NaN₃ undergoes a transition not far below room temperature. In a review, [1993Bel] quotes a range of 11-19.5 °C. Individual results are summarized in Table 1. There is no transition above room temperature [1965Mul].

Table 1 $\alpha \rightarrow \beta$ transition temperature of NaN₃ as measured by different methods

°C	Method	Reference	
9 (?)	XRD	[1963Pri]	
11	Raman	[1973Iqb]	
18	DTA	[1957Pet]	
	XRD	[1968Pri]	
19	ESR	[1963Mil]	
20	$C_{\rm p}$	[1981Bel]	
	$C_{\rm p}^{\rm r}$	[1976Car]	
~20	Raman	[1974Sim]	
25	NMR	[1977Jef]	

Both forms have been characterized by x-ray and/or neutron diffraction patterns, as well as by Raman, electron spin resonance (ESR), or nuclear magnetic resonance (NMR) spectroscopy in some cases [1925Hen, 1934Wes, 1936Fre, 1939Bas, 1943Bas, 1963Mil, 1966Par, 1968Pri, 1976Cho, 1977Jef, 1977Ste, 1984Agh, 1987Nis].

Crystal Structures and Lattice Parameters

Crystal structures and lattice parameters are summarized in Tables 2 and 3.

Both forms of NaN₃ are layered structures [1968Pri] resembling a sandwich made of alternating layers of Na⁺ and N_3^- ions. Each ionic species is surrounded by six of the other species. The N₃ ion is linear and symmetrical [1939Fre]. The low-temperature aNaN3 is monoclinic and is isostructural with LiN₃ [1968Pri]. The transition to β NaN₃ is of displacive rather than order/disorder nature [1983Agh] and involves shear of the Na atoms and a contraction of the lattice along the monoclinic a-axis [1968Pri]. The hexagonal BNaN3 may also be described using the equivalent rhombohedral unit cell [1939Bas, 1943Bas, 1963Pri, 1977Jef]; the reported lattice parameters for this configuration are: a = 0.5491 nm, $\alpha = 38.43^{\circ}$ [1925Hen] and a = $0.5488 \text{ nm}, \alpha = 38.43^{\circ} [1939 \text{Bas}, 1943 \text{Bas}]$. The temperature dependences of the lattice parameters of βNaN_3 were measured by [1966Par] by high-temperature x-ray diffraction (XRD). The reported [1966Par] smoothed linear dependences are: $da/dT = 4.3 \times 10^{-5}$ nm/K and $dc/dT = 7.6 \times 10^{ 10^{-5}$ nm/K in the range 30-100 °C.

 Na_3N was examined by powder XRD at room temperature [2002Fis, 2002Sep], and its structure was found to be simple cubic. The structure was described as anti-ReO₃, with a simple lattice made of corner-shared NNa₆ octahedrons [2002Fis, 2002 Sep].

Thermodynamics

The heat capacity of NaN₃ was measured by adiabatic calorimeter [1966Fri, 1976Car, 1981Bel] and by ice calorimetry [1941Sat]; the total temperature range covered was -269 to +302 °C. The $\alpha \rightarrow \beta$ transition is represented in the C_p -temperature curve by a λ -type anomaly [1976Car, 1981Bel]. The enthalpy change associated with this transition is small, and the reported values, in Joules per mole, are 12.2 [1976Car], 112 [1981Bel], and ~63 [1966Fri]. The lowest value [1976Car] is probably the most accurate. The transition has been described as second order [1976Car], "weakly first order" [1983Agh], or "predominantly second order" [1968Pri, 1984Agh].

From solution calorimetry, the standard thermodynamic formation properties of NaN₃ are $\Delta_{\rm f} H^{\circ}_{298} = 21.3$ kJ/mol

Phase	Composition, at.% Na	Pearson symbol	Space group	Strukturbericht designation	Prototype	Temperature, °C	Reference
αNaN_3	25.0	mC8	C2/m		AuSe	<19	[1966Par, 1968Pri]
βNaN ₃	25.0	hR4	<i>R</i> 3 <i>m</i> (a)	$F5_1$	NaCrS ₂	>19	[1936Fre, 1968Pri
Na ₃ N	75.0		$Pm\overline{3}m$			25	[2002Fis]
αNa	100	hP2	$P6_3/mmc$	A3	Mg	<-233	[King2]
3Na	100	cI2	$Im\overline{3}m$	A2	W	25	[King1]

Table 2 N-Na crystal structure data

Table 3 N-Na lattice parameter data

Phase	Composition, at.% Na	Lattice parameters, nm			Temperature,		
		a	b	c	β	°C	Reference
αNaN_3	25.0	0.61654	0.36350	0.52634	107.543°	-261	[1984Agh]
		0.61861	0.36439	0.52888	107.756°	-191	[1984Agh]
		0.61971	0.36432	0.53011	108.166°	-143	[1984Agh]
		0.62233	0.36510	0.53359	108.444°	-113	[1984Agh]
		0.6211	0.3658	0.5323	108.43°	-95	[1968Pri]
		0.62116	0.36419	0.53205	108.806°	-94	[1984Agh]
		0.62520	0.36543	0.53647	109.584°	-46	[1984Agh]
		0.62614	0.36579	0.53842	109.522°	-45	[1984Agh]
		0.62764	0.36558	0.54178	110.108°	-20	[1984Agh]
		0.63043	0.36613	0.54285	110.802°	-1	[1984Agh]
		0.62971	0.36593	0.54369	110.832°	2	[1984Agh]
		0.63016	0.36566	0.54265	111.106°	7	[1984Agh]
		0.63105	0.36578	0.54830	111.212°	9	[1984Agh]
		0.62850	0.36436	0.54379	111.396°	13	[1984Agh]
		0.63264	0.36525	0.54902	112.593°	22	[1984Agh]
		0.6303	0.3657	0.5454	111.33°	RT(a)	[1966Par]
βNaN_3	25.0	0.3646		1.5213		RT(a)	[1968Pri]
		0.3646		1.524		20	[1939Bas]
		0.3645		1.5231		25	[1925Hen]
		0.3646		1.5223		25	[1977Ste]
		0.362		1.513		25	[1934Wes]
		0.3647		1.522		25	[1976Car]
		0.36405		1.5195		34	[1966Par]
		0.36520		1.5210		53.5	[1966Par]
		0.36562		1.5220		74.5	[1966Par]
		0.36682		1.5244		97.5	[1966Par]
		0.367		1.510		200	[1934Wes]
		0.47325				25	[2002Fis]
αNa	100	0.3767		0.6154		<-233	[King2]
βNa	100	0.42906				25	[King1]
(a) RT: roon	n temperature in the orig	ginal					

and $S_{298}^{\circ} = 70.5 \text{ J/mol} \cdot \text{K}$ [1956Gra1]. The derived lattice energy is 732 kJ/mol [1956Gra2].

The standard enthalpy of formation of Na_3N was estimated [1966Moo] from the Born-Haber cycle to be -151 J/mol. It is metastable at room temperature.

Pressure

The $\beta \rightarrow \alpha$ transition can be effected at room temperature by the simple application of pressure [1964Bra], and it was estimated [1968Pri] that the lowering of the transition temperature by 1 °C corresponds to a pressure increase of 35 bar. This estimate is consistent with the pressure dependence of the transition temperature from Raman spectral data [1974Sim], which may be represented by:

$$T_{\rm trs}$$
 (°C) = 20 + 29*P*(kbar) (Eq 1)

A third form of NaN_3 is said to exist at pressures greater than 30 kbar and temperatures greater than 65 °C [1971Pis], from XRD measurements under these conditions.

References

- **1898Cur:** T. Curtius and J. Rissom, On HN₃, *J. Prakt. Chem.*, Vol 58 (No. 7-8), 1898, p 261-309 (in German). (Equi Diagram; Experimental)
- **1904Den:** L.M. Dennis and A.W. Browne, HN₃ and the Inorganic Azides, *Z. Anorg. Allg. Chem.*, Vol 40 (No. 1), 1904, p 68-107 (in German). (Equi Diagram; Experimental)
- **1910 Fis:** F. Fischer and F. Schröter, New Metal-Nitrogen Compounds and Their Stability According to the Periodic System, *Ber. Deut. Chem. Gesell.*, Vol 43, 1910, p 1465-1479 (in German). (Equi Diagram; Experimental)
- **1925Gue:** E.W. Guernsey and M.S. Sherman, The Mechanism of the Fixation of Nitrogen as NaCN, *J. Am. Chem. Soc.*, Vol 47 (No. 7), 1925, p 1932-1940. (Equi Diagram; Experimental)
- **1925Hen:** S.B. Hendricks and L. Pauling, The Crystal Structure of NaN₃, KN₃ and KCNO and the Nature of the N₃ Group, *J. Am. Chem. Soc.*, Vol 47 (No. 12), 1925, p 2904-2920. (Crys Structure; Experimental)
- **1926Suh:** R. Suhrmann and K. Clusius, On the Preparation of Pure Alkali Metals, *Z. Anorg. Allg. Chem.*, Vol 152 (No. 1), 1926, p 52-58 (in German). (Equi Diagram; Experimental)
- **1929Mol:** W. Moldenhauer and H. Möttig, The Reaction of Alkali Metals with Nitrogen Under the Influence of an Electrical Discharge, *Ber. Deut. Chem. Gesell.*, Vol 62, 1929, p 1954-1959 (in German). (Equi Diagram; Experimental)
- **1930Wat:** H. Wattenberg, Two Preparative Methods for Na₃N and K₃N, *Ber. Deut. Chem. Gesell. B*, Vol 63, 1930, p 1667-1672 (in German). (Equi Diagram; Experimental)
- **1934Wes:** C.D. West, The Crystal Structure of Some Alkali Hydrosulfides and Monosulfides, *Z. Kristallogr.*, Vol 88 (No. 2), 1934, p 97-115. (Crys Structure; Experimental)
- **1936Fre:** L.K. Frevel, The Configuration of the Azide Ion, *J. Am. Chem. Soc.*, Vol 58 (No. 5), 1936, p 779-782. (Crys Structure; Experimental)
- **1939Bas:** M. Bassière, Crystal Structure of Azides, Constitution of the N₃ Ion, *Compt. Rend. Hebd. Seances Acad. Sci.*, Vol 208, 1939, p 659-661 (in French). (Crys Structure; Experimental)
- **1941Sat:** S. Satoh and T. Sagobe, The Specific Heats of Cu₃N, CbN, NaN₃ and the Atomic Heat of Nitrogen, *Sci. Papers Inst. Phys. Chem. Res. (Tokyo),* Vol 38, 1941, p 174-182. (Thermo; Experimental)
- **1943Bas:** M. Bassière, Crystal Structure of Azides—the Constitution of the Azide Ion, *Mém. Serv. Chim. État (Paris)*, Vol 30, 1943, p 33-46 (in French). (Crys Structure; Experimental)
- **1954Eph:** F. Ephraim, *Inorganic Chemistry*, 6th ed., P.C.L. Thorne and E.R. Roberts, Ed., Interscience, 1954. (Equi Diagram; Review)
- **1956Gra1:** P. Gray and T.C. Waddington, Thermochemistry and Reactivity of the Azides. I. Thermochemistry of the Inorganic Azides, *Proc. R. Soc. A*, Vol 235, 1956, p 106-119. (Thermo; Experimental)
- **1956Gra2:** P. Gray and T.C. Waddington, Thermochemistry and Reactivity of the Azides. II. Lattice Energies of Ionic Azides, Electron Affinity and Heat of Formation of the Azide Radical and Related Properties, *Proc. R. Soc. A*, Vol 235, 1956, p 481-495. (Thermo; Experimental)
- **1957Pet:** J. Petz, unpublished data, 1957, in [1963Mil]. (Equi Diagram; Experimental)
- **1963Lut:** G. Lutz, D. Neil, and K. Anderson, Sodium Purification, *Chemical Separation Processes for Plutonium and Uranium*, R.C. Vogel, Ed., U.S. Atomic Energy Commission (USAEC) Report ANL-6800, 1963, p 188-189. (Equi Diagram; Experimental)

- **1963Mil:** B.S. Miller and G.J. King, Crystal Structure Change of NaN₃ at 19 °C, *J. Chem. Phys.*, Vol 39 1963, p 2779-2780. (Crys Structure; Experimental)
- **1963Pri:** G.E. Pringle and D.E. Noakes, Behavior of NaN₃ at Low Temperatures, *Acta Crystallogr.*, Vol 16, 1963, p A192. (Crys Structure; Experimental)
- **1964Bra:** R.S. Bradley, J.D. Grace, and D.C. Munro, Studies on Polymorphism at High Pressure by Means of X-Ray Diffraction in situ, *Z. Kristallogr.*, Vol 120 (No. 4-5), 1964, p 349-358. (Crys Structure; Experimental)
- **1965Mul:** H.J. Müller and J.A. Jöbstl, High-Temperature Modifications of Alkali Azides, *Z. Kristallogr.*, Vol 121 (No. 5), 1965, p 385-391 (in German). (Crys Structure; Experimental)
- **1966Fri:** H.P. Fritzer and T. Torker, The True Heat Capacity of NaN₃, *Monatsh. Chem.*, Vol 97 (No. 3), 1966, p 703-709 (in German). (Thermo; Experimental)
- **1966Moo:** G.J. Moody and J.D.R. Thomas, Alkali Metal Nitrides, J. Chem. Edu., Vol 43 (No. 4), 1966, p 205-206. (Thermo; Theory)
- **1966Par:** R.B. Parsons and A.D. Yoffe, Thermal Expansion of the Alkali Metal Azides, *Acta Cryst.*, Vol 20, 1966, p 36-42 (Crys structure; Experimental)
- **1967Caf:** F.A. Cafasso, Solubility of Nitrogen in Liquid Sodium, *Reactor Technology*, R.B. Duffield, Ed., U.S. Atomic Energy Commission (USAEC) Report ANL-7599, 1967, p 137-138. (Equi Diagram; Experimental)
- **1968Pri:** G.E. Pringle and D.E. Noakes, The Crystal Structures of LiN₃, NaN₃ and Sr(N₃)₂, *Acta Crystallogr. B*, Vol 24 (No. 2), 1968, p 262-269. (Crys Structure; Experimental)
- **1968Vel:** E. Veleckis, K.E. Anderson, F.A. Cafasso, and H.M. Feder, "Solubilities of Nitrogen Gas and Sodium Cyanide in Liquid Sodium," Report ANL-1520, Part 1, 1968, p 295-298. (Equi Diagram; Experimental)
- **1971Pis:** C.W.F.T. Pistorius and A.J.C. White, High-Pressure Polymorphism of NaHF₂ and NaN₃, *High Temp. High Press.*, Vol 2 (No. 5),1971, p 507-511. (Crys Structure; Experimental)
- **1973Iqb:** Z. Iqbal, Temperature Dependence of Raman-Active Phonons and Nature of the Phase Transition in LiN₃ and NaN₃, *J. Chem. Phys.*, Vol 59 (No. 4), 1973, 1769-1774. (Crys Structure; Experimental)
- **1974Sim:** G.J. Simonis and C.E. Hathaway, Raman Spectrum and Phase Transition in NaN₃, *Phys. Rev. B*, Vol 10 (No. 10), 1974, p 4419-4433. (Crys Structure; Experimental)
- **1976Car:** R.W. Carling and E.F. Westrum, Thermophysics of Alkali and Related Azides. I. Heat Capacity of NaN₃ from 5 to 350 K, *J. Chem. Thermodyn.*, Vol 8 (No. 6), 1976, p 565-573. (Thermo; Experimental)
- **1976Cho:** C.S. Choi and E. Prince, A Neutron Diffraction Study of Structure and Thermal Motion in Several Monovalent Metal Azides, *J. Chem. Phys.*, Vol 64 (No. 11), 1976, p 4510-4516. (Crys Structure; Experimental)
- **1977Jef:** K.R. Jeffrey, Sodium NMR and the Phase Transition in NaN₃, *J. Chem. Phys.*, Vol 66 (No. 10), 1977, p 4677-4682. (Crys Structure; Experimental)
- **1977Ste:** E.D. Stevens and H. Hope, A Study of the Electron-Density Distribution in NaN₃, *Acta Crystallogr. A*, Vol 33 (No. 5), 1977, p 723-729. (Crys Structure; Experimental)
- **1981Bel:** V.N. Belomestnykh, M.N. Grineva, and S.R. Sharov, The Heat Capacity of NaN_3 in the Region of the Polymorphic Transition, *Zh. Fiz. Khim.*, Vol 55 (No. 2), 1981, p 503-505 (in Russian); TR, *Russ. J. Phys. Chem.*, Vol 55 (No. 2), 1981, p 282-283. (Thermo; Experimental)
- 1982Rum: N. Rumbaut, F. Casteels, and M. Brabers, Thermodynamic Potential of Nitrogen, Carbon, Oxygen and Hydrogen in

Liquid Lithium and Sodium, H.U. Borgstedt, Ed., *Material Behavior and Physical Chemistry in Liquid Metal Systems*, 1982, Plenum Press, p 437-444. (Thermo; Review)

- **1983Agh:** S.R. Aghdee and A.I.M. Rae, The Phase Transition in NaN₃, *J. Chem. Phys.*, Vol 79 (No. 9), 1983, p 4558-4563. (Crys Structure; Experimental)
- **1984Agh:** S.R. Aghdee and A.I.M. Rae, The Low Temperature Phase of NaN₃, *Acta Crystallogr. B*, Vol 40 (No. 3), 1984, p 214-218. (Crys Structure; Experimental)
- **1987Nis:** M. Nishi, Neutron Scattering Study on Structural Phase Transition of NaN₃, *Kyoto Daigaku Genshiro Jikkensho (Tech. Rep.)*, KURRI-TR-286, 1987, p 39-44 (in Japanese). (Crys Structure; Experimental)
- **1990Fuj:** Y. Fujimoto, T. Ando, and S. Morisaki, Thermal Stability of Sodium Azide, *Kogyo Kayaku*, Vol 51 (No. 3), 1990, p 148-156 (in Japanese). (Equi Diagram; Experimental)
- **1990Sha:** S.B. Sharma, P. Paliwal, and M. Kumar, Electronic Dielectric Constant, Energy Gap and Fractional Ionic Character of Polyatomic Binary Compounds, *J. Phys. Chem. Solids*, Vol 51 (No. 1), 1990, p 35-39. (Equi Diagram; Theory)

- **1993Bel:** V.N. Belomestnykh, Acoustic Studies of Polymorphic Transformation in Inorganic Azides, *Izv. Akad. Nauk SSSR*, *Neorg. Khim.*, Vol 29 (No. 2), 1993, p 221-227 (in Russian); TR, *Inorg. Mater.*, Vol 29 (No. 2), 1993, 217-223. (Crys Structure, Thermo; Review)
- **2000Bor:** H.U. Borgstedt and C. Guminski, Solubilities and Solution Chemistry in Liquid Alkali Metals, *Monatsh. Chem.*, Vol 131 (No. 9), 2000, p 917-930. (Equi Diagram; Review)
- 2001Bor: H.U. Borgstedt and C. Guminski, IUPAC-NIST Solubility Data Series 75, Nonmetals in Liquid Alkali Metals, J. Phys. Chem. Ref. Data, Vol 30 (No. 4), 2001, p 835-1158. (Equi Diagram; Review)
- **2002Fis:** D. Fischer and M. Hansen, Synthesis and Structure of Na₃N, *Angew. Chem. Int. Ed. Eng.*, Vol 41 (No. 10), 2002, p 1755-1756. (Equi Diagram, Crys Structure; Experimental); See also [2002Sep]
- **2002Sep:** K. Seppelt, Synthesis and Structure of Na₃N, *ChemTracts-Inorganic Chemistry*, Vol 15 (No. 8), 2002, p 452-454. (Equi Diagram, Crys Structure; Review); Summary of [2002Fis]

N-Na evaluation contributed by **J. Sangster**, Sangster Research Laboratories, P.O. Box 49562, 5122 Cotes des Neiges, Montreal, Quebec, Canada H3T 2A5. Literature searched through 2004.